619 research outputs found

    Complete analysis of the H5 hemagglutinin and N8 neuraminidase phylogenetic trees reveals that the H5N8 subtype has been produced by multiple reassortment events

    Get PDF
    The analysis of the complete H5 hemagglutinin and H8 neuraminidase phylogenetic trees presented in this paper shows that the H5N8 avian influenza has been generated by multiple reassortment events. The H5N8 strain does not have a single origin and is produced when the H5 hemagglutinin and N8 neuraminidase re-assort from other H5 and N8 containing strains. While it was known that there had been a re-assortment to incorporate the Guangdong H5 hemagglutinin at the start of the Korean outbreak, the results show that there have also been multiple reassortment events amongst the non-Korean sequences

    Signatures of Topological Defects

    Full text link
    We argue that due to various restrictions cosmic strings and monopole-string networks are not likely to produce the observed flux of ultra-high energy cosmic rays (UHECR). Among the topological defects studied so far, the most promising UHECR sources are necklaces and monopolonia. Other viable sources which are similar to topological defects are relic superheavy particles. All these sources have an excess of pions (and thus photons) over nucleons at production. We demonstrate that in the case of necklaces the diffuse proton flux can be larger than photon flux, due to absorption of the latter on radiobackground, while monopolonia and relic particles are concentrated in the Galactic halo, and the photon flux dominates. Another signature of the latter sources is anisotropy imposed by asymmetric position of the sun in the Galactic halo. In all cases considered so far, including necklaces, photons must be present in ultra-high energy radiation observed from topological defects, and experimental discrimination between photon-induced and proton-induced extensive air showers can give a clue to the origin of ultra-high energy cosmic rays.Comment: version accepted for publication in Phys. Rev. D. No changes in the conclusions and in figure

    Nuclear Interaction Gamma-Ray Lines from the Galactic Center Region

    Get PDF
    Aims. The accretion of stars onto the central supermassive black hole at the center of the Milky Way is predicted to generate large fluxes of subrelativistic ions in the Galactic center region. We analyze the intensity, shape and spatial distribution of de-excitation gamma-ray lines produced by nuclear interactions of these energetic particles with the ambient medium. Methods. We first estimate the amount and mean kinetic energy of particles released from the central black hole during star disruption. We then calculate from a kinetic equation the energy and spatial distributions of these particles in the Galactic center region. These particle distributions are then used to derive the characteristics of the main nuclear interaction gamma-ray lines. Results. Because the time period of star capture by the supermassive black hole is expected to be shorter than the lifetime of the ejected fast particles against Coulomb losses, the gamma-ray emission is predicted to be stationary. We find that the nuclear de-excitation lines should be emitted from a region of maximum 5^\circ angular radius. The total gamma-ray line flux below 8 MeV is calculated to be 104\approx10^{-4} photons cm2^{-2} s1^{-1}. The most promising lines for detection are those at 4.44 and \sim6.2 MeV, with a predicted flux in each line of \approx10510^{-5} photons cm2^{-2} s1^{-1}. Unfortunately, it is unlikely that this emission can be detected with the INTEGRAL observatory. But the predicted line intensities appear to be within reach of future gamma-ray space instruments. A future detection of de-excitation gamma-ray lines from the Galactic center region would provide unique information on the high-energy processes induced by the central supermassive black hole and the physical conditions of the emitting region.Comment: 7 pages, 5 figures, accepted for publication in A&

    Hadronic Mass Moments in Inclusive Semileptonic B Meson Decays

    Full text link
    We have measured the first and second moments of the hadronic mass-squared distribution in B -> X_c l nu, for P(lepton) > 1.5 GeV/c. We find <M_X^2 - M_D[Bar]^2> = 0.251 +- 0.066 GeV^2, )^2 > = 0.576 +- 0.170 GeV^4, where M_D[Bar] is the spin-averaged D meson mass. From that first moment and the first moment of the photon energy spectrum in b -> s gamma, we find the HQET parameter lambda_1 (MS[Bar], to order 1/M^3 and beta_0 alpha_s^2) to be -0.24 +- 0.11 GeV^2. Using these first moments and the B semileptonic width, and assuming parton-hadron duality, we obtain |V_cb| = 0.0404 +- 0.0013.Comment: 11 pages postscript, also available through http://w4.lns.cornell.edu/public/CLNS, submitted to PR

    Evidence of New States Decaying into Ξcπ\Xi^{\prime}_{c}\pi

    Full text link
    Using 13.7 fb1fb^{-1} of data recorded by the CLEO detector at CESR, we report evidence for two new charmed baryons: one decaying into Ξc0π+\Xi_c^{0 \prime}\pi^+ with the subsequent decay Ξc0Ξc0γ\Xi_c^{0 \prime} \to \Xi_c^0 \gamma, and its isospin partner decaying into Ξc+π\Xi_c^{+ \prime} \pi^- followed by Ξc+Ξc+γ\Xi_c^{+\prime} \to \Xi_c^+\gamma. We measure the following mass differences for the two states: M(Ξc0γπ+)M(Ξc0)M(\Xi_c^0 \gamma \pi^+)-M(\Xi_c^0)=318.2+-1.3+-2.9 MeV, and M(Ξc+γπ)M(Ξc+)M(\Xi_c^+ \gamma \pi^-)-M(\Xi_c^+)=324.0+-1.3+-3.0 MeV. We interpret these new states as the JP=1/2Ξc1J^P = 1/2^- \Xi_{c1} particles, the charmed-strange analogs of the Λc1+(2593)\Lambda_{c1}^+(2593).Comment: 10 pages postscript, also available through http://w4.lns.cornell.edu/public/CLN

    A Search for BτνB\to \tau\nu

    Full text link
    We report results of a search for BτνB\to\tau\nu in a sample of 9.7 million charged BB meson decays. The search uses both πν\pi\nu and ννˉ\ell\nu\bar\nu decay modes of the τ\tau, and demands exclusive reconstruction of the companion Bˉ\bar B decay to suppress background. We set an upper limit on the branching fraction B(Bτν)<8.4×104{\cal B}(B\to \tau\nu) < 8.4\times 10^{-4} at 90% confidence level. With slight modification to the analysis we also establish B(B±K±ννˉ)<2.4×104{\cal B}(B^\pm\to K^\pm\nu\bar\nu) < 2.4\times 10^{-4} at 90% confidence level.Comment: 10 ages postscript, also available through http://w4.lns.cornell.edu/public/CLN

    Measurement of the Relative Branching Fraction of Υ(4S)\Upsilon(4S) to Charged and Neutral B-Meson Pairs

    Full text link
    We analyze 9.7 x 10^6 B\bar{B}$ pairs recorded with the CLEO detector to determine the production ratio of charged to neutral B-meson pairs produced at the Y(4S) resonance. We measure the rates for B^0 -> J/psi K^{(*)0} and B^+ -> J/psi K^{(*)+} decays and use the world-average B-meson lifetime ratio to extract the relative widths f+-/f00 = Gamma(Y(4S) -> B+B-)/Gamma(Y(4S) -> B0\bar{B0}) = = 1.04 +/- 0.07(stat) +/- 0.04(syst). With the assumption that f+- + f00 = 1, we obtain f00 = 0.49 +/- 0.02(stat) +/- 0.01(syst) and f+- = 0.51 +/- 0.02(stat) +/- 0.01(syst). This production ratio and its uncertainty apply to all exclusive B-meson branching fractions measured at the Y(4S) resonance.Comment: 11 pages postscript, also available through http://w4.lns.cornell.edu/public/CLN

    Observation of the Ωc0\Omega_{c}^{0} Charmed Baryon at CLEO

    Full text link
    The CLEO experiment at the CESR collider has used 13.7 fb1^{-1} of data to search for the production of the Ωc0\Omega_c^0 (css-ground state) in e+ee^{+}e^{-} collisions at s10.6\sqrt{s} \simeq 10.6 {\rm GeV}. The modes used to study the Ωc0\Omega_c^0 are Ωπ+\Omega^- \pi^+, Ωπ+π0\Omega^- \pi^+ \pi^0, ΞKpi+π+\Xi^- K^- pi^+ \pi^+, Ξ0Kpi+\Xi^0 K^- pi^+, and Ωπ+ππ+\Omega^- \pi^+ \pi^- \pi^+. We observe a signal of 40.4±\pm9.0(stat) events at a mass of 2694.6±\pm2.6(stat)±\pm1.9(syst) {\rm MeV/c2c^2}, for all modes combined.Comment: 10 pages postscript, also available through http://w4.lns.cornell.edu/public/CLN

    First Observation of the Decays B0Dppˉπ+B^{0}\to D^{*-}p\bar{p}\pi^{+} and B^{0}\to D^{*-}p\bar{n}$

    Full text link
    We report the first observation of exclusive decays of the type B to D^* N anti-N X, where N is a nucleon. Using a sample of 9.7 times 10^{6} B-Bbar pairs collected with the CLEO detector operating at the Cornell Electron Storage Ring, we measure the branching fractions B(B^0 \to D^{*-} proton antiproton \pi^+) = ({6.5}^{+1.3}_{-1.2} +- 1.0) \times 10^{-4} and B(B^0 \to D^{*-} proton antineutron) = ({14.5}^{+3.4}_{-3.0} +- 2.7) times 10^{-4}. Antineutrons are identified by their annihilation in the CsI electromagnetic calorimeter.Comment: 9 pages postscript, also available through http://w4.lns.cornell.edu/public/CLN

    The composition of the protosolar disk and the formation conditions for comets

    Get PDF
    Conditions in the protosolar nebula have left their mark in the composition of cometary volatiles, thought to be some of the most pristine material in the solar system. Cometary compositions represent the end point of processing that began in the parent molecular cloud core and continued through the collapse of that core to form the protosun and the solar nebula, and finally during the evolution of the solar nebula itself as the cometary bodies were accreting. Disentangling the effects of the various epochs on the final composition of a comet is complicated. But comets are not the only source of information about the solar nebula. Protostellar disks around young stars similar to the protosun provide a way of investigating the evolution of disks similar to the solar nebula while they are in the process of evolving to form their own solar systems. In this way we can learn about the physical and chemical conditions under which comets formed, and about the types of dynamical processing that shaped the solar system we see today. This paper summarizes some recent contributions to our understanding of both cometary volatiles and the composition, structure and evolution of protostellar disks.Comment: To appear in Space Science Reviews. The final publication is available at Springer via http://dx.doi.org/10.1007/s11214-015-0167-
    corecore